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Parallel, Continuous Monitoring and Quantification of
Programmed Cell Death in Plant Tissue

Alexander Silva Pinto Collins, Hasan Kurt, Cian Duggan, Yasin Cotur, Philip Coatsworth,
Atharv Naik, Matti Kaisti, Tolga Bozkurt, and Firat Güder*

Accurate quantification of hypersensitive response (HR) programmed cell
death is imperative for understanding plant defense mechanisms and
developing disease-resistant crop varieties. Here, a phenotyping platform for
rapid, continuous-time, and quantitative assessment of HR is demonstrated:
Parallel Automated Spectroscopy Tool for Electrolyte Leakage (PASTEL).
Compared to traditional HR assays, PASTEL significantly improves temporal
resolution and has high sensitivity, facilitating detection of microscopic levels
of cell death. Validation is performed by transiently expressing the effector
protein AVRblb2 in transgenic Nicotiana benthamiana (expressing the
corresponding resistance protein Rpi-blb2) to reliably induce HR. Detection of
cell death is achieved at microscopic intensities, where leaf tissue appears
healthy to the naked eye one week after infiltration. PASTEL produces large
amounts of frequency domain impedance data captured continuously. This
data is used to develop supervised machine-learning (ML) models for
classification of HR. Input data (inclusive of the entire tested concentration
range) is classified as HR-positive or negative with 84.1% mean accuracy (F1
score = 0.75) at 1 h and with 87.8% mean accuracy (F1 score = 0.81) at 22 h.
With PASTEL and the ML models produced in this work, it is possible to
phenotype disease resistance in plants in hours instead of days to weeks.
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1. Introduction

Plants depend on innate immunity to elimi-
nate infectious agents and parasites.[1] This
relies on effective recognition of pathogens,
leading to the activation of intracellular sig-
naling cascades to elicit defense responses.
Cell-surface receptors have the capability
to identify pathogen-associated molecular
patterns (PAMPs) and pathogen-secreted
proteins, commonly referred to as effec-
tors, located in the extracellular space.
In contrast, effector proteins translocated
inside the host cells are typically recog-
nized by intracellular nucleotide-binding
domain leucine-rich repeat-containing pro-
teins (NLRs).[2] Activation of cell-surface
immune receptors or NLRs often cul-
minates in the hypersensitive response
(HR), typified by a rapid and localized
form of programmed cell death at the
site of infection.[3,4] HR can be gener-
ated in response to various classes of
pathogens and is associated with disease
resistance. On the macroscopic scale, HR

cell death often manifests as discolored, necrotic lesions with
abrupt boundaries from surrounding healthy tissue. HR is asso-
ciated with numerous processes, including cytoplasmic shrink-
age, loss of turgor pressure, and vacuolization.[5,6] The phenotype
and kinetics of HR can, however, differ greatly depending on the
host and causative agent.[7] HR assays are invaluable in the study
of plant-pathogen interactions,[8,9] defense responses, and asso-
ciated signal transduction pathways.[10] HR assays are used not
only for detecting the presence of HR, but also for precisely evalu-
ating the intensity and timing of responses. Furthermore, HR as-
says can be used to screen for candidate gene/effector pairs,[11,12]

which confer disease resistance, critical to the development and
engineering of more resistant crop varieties.

Assessment of HR is non-standardized and numerous meth-
ods are used to evaluate it, both qualitatively and quantitatively. In
its simplest form, HR is assessed manually by visually inspecting
the symptoms on the leaf surface with the naked eye and by ap-
plying an arbitrary index scoring system. This system rates the in-
tensity based on the size and appearance of the lesions. Azo dyes
such as Trypan blue and Evans blue penetrate non-viable cells and
are commonly used to visualize cell death;[13,14] microscopy imag-
ing is performed on stained tissue, and cell death intensity can be
estimated using image processing techniques. Staining can also
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be used to detect hydrogen peroxide, a reactive oxygen species
produced during HR, using diaminobenzidine.[15] Fluorescence
imaging can be used to visualize the accumulation of HR-related
phenolic compounds[16] or detect changes in autofluorescence of
leaves[17] as a measure of cell death. Another technique for mea-
suring HR is the electrolyte leakage assay (ELA), which involves
placing excised leaf tissue in a small volume of distilled water
and regularly sampling the conductivity of the solution.[18–20] HR
cell death compromises the integrity of cellular membranes, re-
sulting in a decrease in the impedance of the sample solution as
ionic species diffuse from the plant tissue into the sample. The
extent of leakage is dependent on the intensity of cell death and
so enables a quantitative proxy measure of HR.

While different methods have their own advantages and are
often used in conjunction with each other as confirmatory mea-
sures of HR, few are suitable for high throughput, sensitive, and
continuous measurement.[21,22] Staining techniques are typically
both time and labor-intensive, can involve the handling of toxic
chemicals, and each stained tissue sample provides data for only
a single time point. High throughput image acquisition has been
demonstrated with fluorescence imaging of whole leaves,[17]

but as with other optical techniques, quantification/scoring
is not fully automated and requires manual processing. ELAs
require minimal sample preparation and enable a quantita-
tive readout at multiple time points but involve a large time
commitment; conductivity is sampled manually, and so can be
arduous if measuring many samples at regular (typically hourly)
intervals.

A highly sensitive, automated system would offer several
benefits for detecting the activation of HR in plant immunity.
One significant advantage would be the ability to identify mi-
croscopic HR, a function that most conventional methods lack.
This capability is crucial because certain conditions, although
presumed not to cause HR, might indeed have microscopic HR
occurring. Without such sensitive detection, these conditions
could potentially lead to misleading conclusions. Moreover,
an automated system can aid in studying the early events tak-
ing place before visual HR symptoms become apparent. This
allows for a deeper understanding of the initial stages of HR
activation, which can be pivotal in understanding plant im-
munity and developing prevention strategies against pests and
diseases.

In this work, we describe a high-throughput ELA platform
for rapid quantification of HR cell death. The proof-of-concept
platform (Parallel Automated Spectroscopy Tool for Electrolyte
Leakage, PASTEL) is implemented in an eight-channel modular
well format with integrated and removable low-cost single-use
electrodes alongside low-cost microcontroller-based electronics.
PASTEL offers continuous time monitoring of electrolyte leakage
through parallel automated impedance spectroscopy measure-
ments with a tunable frequency range and adjustable time inter-
vals (sub-seconds to minutes). Compared to traditional ELAs, the
continuous time, high-frequency sampling capabilities of PAS-
TEL enables faster detection of the onset of HR and higher tem-
poral resolution for changes in conductivity. We demonstrate the
ability of PASTEL to quantify differing intensities of cell death, in-
cluding detection of microscopic HR, using agroinfiltration me-
diated HR in transgenic lines of Nicotiana benthamiana with in-
tegrated controls.

2. Results and Discussion

2.1. Multi-Sample, Automated Conductivity Measurement
System

PASTEL consists of two main components: i) a modular, 3D-
printed array of eight reusable sample measurement wells
with replaceable, single-use conductivity probes and ii) a
microcontroller-based system for sampling solution impedance.
The measurement wells (Figure 1a) can each hold a set of three
leaf discs (the sample) and analyte solution, with the electrode
assembly inserted in the bottom aperture. The design with the
electrodes placed at the bottom ensures that the floating tissue
samples do not come into contact with the electrodes, interfer-
ing with the measurement. The electrodes are, therefore, only in
contact with the analyte solution under test. The internal diame-
ter of the wells (20 mm) is sufficient for each leaf disc (diameter
of each leaf disc = 7.8 mm) to be completely in contact with the
solution without overlapping, with enough space for placing the
discs in the desired (abaxial side down) orientation.[23]

We designed the internal geometry of the well to minimize the
experimental volume of liquid required while still providing suf-
ficient surface area for multiple leaf discs to float without over-
lapping. A smaller sampling volume results in less dilution of
the sample (reducing sensitivity requirements of the conductivity
sensor) and reduces ionic diffusion time toward electrodes. We
3D-printed the wells using a filament of acrylonitrile butadiene
styrene (ABS), a durable, water-resistant polymer, making them
suitable for reuse following sterilization with ethanol. The sen-
sor assembly is a simple two-electrode setup constructed from
chemically inert gold-plated brass pins mounted in a polypropy-
lene housing. To complete the entire assembly, the lids for the
wells (used to minimize analyte evaporation and block ambient
light) and a stand for the measurement wells were 3D printed
using polylactic acid (PLA).

The electronics that perform the measurements facilitate con-
tinuous, concurrent acquisition of the solution impedance in
each of the eight measurement wells. The setup comprises a
microcontroller, multiplexer, and impedance converter where all
are operated by serial commands over USB (Figure 1a). PASTEL
can measure complex impedance over a frequency range of 5–
100 kHz; measurement time for all 8 wells was less than 1 s at a
single frequency and ≈20 s for the entire 5–100 kHz frequency
range (1 kHz intervals).

We characterized the measurement system using aqueous so-
lutions of KCl ranging from 0 to 1 mm. The solution conductivity
was between 0–175 μS cm−1 in this range of concentrations. For
validation, we also performed measurements using a commer-
cially available reference device: HI-5521 Bench Meter (HANNA
Instruments). By applying a scaling constant calculated using the
reference measurements made with the 84 μS cm−1 conductivity
standard (500 μm KCl), we were able to convert the magnitude
of the conductance measured by PASTEL at 10 kHz into a con-
ductivity value (Equation S1, Supporting Information). Both the
commercial device and PASTEL produced highly linear measure-
ments across the range of concentrations tested. Applying the
scaling factor across the range of measurements taken at 10 kHz
produced a strong agreement with the commercial instrument
by HANNA (Figure 1b) with R2 = 0.9986. The Bland-Altman

Adv. Sci. 2024, 2400225 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2400225 (2 of 14)

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202400225 by T

est, W
iley O

nline L
ibrary on [28/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 1. a) Left to right: exploded view schematic of individual measurement well assembly during measurement, the photograph of the well assembly
and system block diagram outlining key components and control hierarchy. b) Correlation graph of the commercial HANNA conductivity meter and
PASTEL system while measuring KCl solutions ranging from 0 to 1 mm (10 kHz excitation frequency, 198 mVp-p) (Data represented as μ ± 𝜎, with n = 3
independent samples). (Left) Bland-Altman graph of PASTEL system against commercial HANNA conductivity meter in the specified KCl solutions.
(± 1.96 𝜎 upper and lower limits designate the confidence level of 95%.) (Right) c) Schematic of experimental procedure for leaf disc assay. PC and
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plot shows the mean difference in measured conductivity be-
tween PASTEL and the commercial device is small (2.62 μS cm−1)
but variance appears to increase with the conductivity of solu-
tion being measured. This systematic shift indicates that the sys-
tem requires further optimization for higher ion concentrations
or a more complex calibration function. In any case, the differ-
ence between measurements were within two standard devia-
tions of each other. Calibration and characterization to determine
impedance and phase measured over the entire frequency range
was also performed (see Figures S1 and S2, Supporting Informa-
tion and Experimental Section).

2.2. Quantitative Detection of Hypersensitive Response with
Nicotiana benthamiana

We used agroinfiltration as a means to induce a reliable, repeat-
able HR to test electrolyte leakage with our system (Figure 1c).
Agroinfiltration is a technique that uses Agrobacterium tumefa-
ciens as a vector to deliver a gene of interest into plant cells,
where it is then transiently expressed. This gene of interest is
housed within the transfer DNA (T-DNA), replacing a set of
genes originally found in the tumor-inducing (Ti) plasmid.[19]

Subsequently, the single-stranded T-DNA is processed and trans-
ferred to the plant cell nucleus via a type-IV secretion system, en-
abling the gene to be expressed without being incorporated into
the genome.[24]

We used transgenic lines of the model plant N. benthami-
ana expressing the resistance (R) protein Rpi-blb2 in all exper-
iments where HR was induced. Rpi-blb2 is a nucleotide-binding
leucine-rich repeat (NLR) protein from Solanum bulbocastanum
that senses the AVRblb2 family of effectors from the potato blight
pathogen Phytophthora infestans,[25–27] Upon specific recognition
of AVRblb2, Rpi-blb2 initiates an effector-triggered-immunity
(ETI) response that culminates in HR programmed cell death.[28]

In each experiment, Rpi-blb2 N. benthamiana leaves were agroin-
filtrated with suspensions of A. tumefaciens carrying AVRblb2
constructs in order to transiently express AVRblb2 and subse-
quently generate HR. Suspensions of A. tumefaciens carrying
empty vector (EV) constructs were used for negative control infil-
trations and dilutions. To control for any potential plant response
due to the bacteria itself, all suspensions were prepared to the
same overall bacterial concentration (OD600 = 0.1). Varying inten-
sities of cell death were tested by preparing mixtures of positive
control (PC) suspensions and negative control (NC) suspensions
at discrete loading ratios (LR), where LR is the fraction of PC sus-
pension (Figure S3, Supporting Information).

We conducted a series of experiments using a range of load-
ing ratios with a view to evaluate the key aspects of our system: i)
reliable, binary detection of HR cell death versus a negative con-

trol; ii) the ability to resolve different intensities of cell death and
iii) the minimum run-time required for statistically significant
detection of HR.

In each experiment, two leaves of a single Rpi-blb2 N. ben-
thamiana plant were identically inoculated with a set of four
Agrobacterium suspensions (Figure 1c). In each quadrant of the
leaf, a different suspension was infiltrated: an empty vector-
carrying negative control (LR = 0.0); two inocula X and Y from a
discrete test range of loading ratios= 0.005–0.5; and an AVRBlb2-
carrying positive control with a relatively higher concentration
(LR = 1.0) resulting in robust visual HR symptoms. The test
range of loading ratios was selected to evaluate the performance
of the system at varying intensities of cell death, ranging from mi-
croscopic cell death to macroscopically symptomatic cell death.
Following infiltration, the plant was then incubated for 24 h in
a growth chamber before taking sets of three leaf discs from
each infiltration patch (two replicates per infiltration, eight sets
total per experiment). A representative leaf at the time of exci-
sion is shown in Figure 2a. Each set of discs was washed and
placed in an individual measurement well with distilled water,
abaxial side down. Three leaf discs were used per well in an at-
tempt to account for any heterogeneity in expression or cell death
within an infiltration patch, and to increase the analytical signal.
Impedance measurements were recorded by the system over a
22 h period, sampling over 5–100 kHz (with 1 kHz intervals) ev-
ery 2 min.

We were able to reliably detect HR with PASTEL for all eight
AVRblb2-carrying infiltrations tested; mean solution conductiv-
ity (averaged at each time point across all repeat experiments,
10 kHz excitation frequency) for all infiltration concentrations
tested was greater than that of the negative control within 1 h
of measurement. By the 22 h endpoint, the mean conductivity of
all but the lowest concentration exceeded the negative control by
>80% (Figure 2b). The mean solution conductivity of the infiltra-
tion of LR = 0.005 was only 22% greater than the negative con-
trol at the endpoint. The mean conductivity measured followed a
similar progression for all concentrations tested; an initial rapid
increase when the discs are first added to the solution, gradu-
ally decreasing toward a plateau at the endpoint where the con-
centration of the electrolytes within the plant tissue approaches
equilibrium with the solution. The equilibrium conductivity is,
of course, dependent on the intensity of cell death. This conduc-
tivity progression was seen even in the absence of hypersensitive
response in the negative control, owing to a basal level of elec-
trolyte leakage, likely caused by the trauma from the excision.
Comparing infiltrations differing in concentration by an order of
magnitude or greater, clear differences in measured conductivity
were seen within and often before 5 h. Although concentrations
less than an order of magnitude apart are distinguishable, the
high variance would suggest that individually comparing data of

NC denote positive and negative control, respectively. PC is an AVRblb2-carrying Agrobacterium suspension of OD600 = 0.1 and NC is an empty vector
(EV)-carrying Agrobacterium suspension of OD600 = 0.1. X and Y contain discrete dilutions of AVRblb2-carrying Agrobacterium suspensions, varied
between experiments. Inset: Simplified molecular schematic of HR generation via agroinfiltration. 1. Single-stranded T-DNA (ssT-DNA) containing gene
for expression for AVRblb2 is processed from the tumor inducing plasmid in the Agrobacterium. 2. ssT-DNA is transported to the plant cell nucleus via
a type IV secretion system. 3. Gene within ssT-DNA is expressed and AVRblb2 effector protein is synthesized. 4. AVRblb2 is specifically recognized by
Rpi-blb2 NLR present in the transgenic plant, ETI response is initiated. 5. ETI culminates in HR, resulting in loss of cell membrane integrity and leakage
of electrolytes into solution surrounding the leaf disc.
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Figure 2. a) Images of a leaf agroinfiltrated with a negative control bacterial suspension (loading ratio of 0.0, LR = 0.0) and AVRblb2-carrying bacterial
suspensions of LR = 0.005, 0.1, and 1.0 (PC). At 1 day (when leaf discs are excised when conducting experiments with PASTEL), all regions of infiltration
appeared healthy. At 2 days, cell death was visible only in the region where the PC was infiltrated (LR = 1.0). The region where the lowest concentration
(LR = 0.005) was infiltrated remained indistinguishable from the negative control at 7 days. b) Mean solution conductivities measured over a 22 h period
for samples infiltrated with a range of concentrations of Agrobacterium suspensions, averaged over multiple independent experiments. Trace labels denote
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similar concentrations across independent experiments may not
be viable. Instead, multiple repeats should be performed to ob-
tain reliable averages for comparison. We speculate a number of
possible contributing factors to this high variance, including dif-
ferences in plant age, variability in expression, and inherent error
in spectrophotometer measurements when preparing dilutions.

We would expect, in general, for expression of AVRblb2 to in-
crease with increasing concentration of Agrobacterium, and so to
the intensity of cell death. We observed a strong positive corre-
lation between mean solution conductivity and concentration of
infiltration, shown at time points of 1, 4, 8, and 22 h (Figure 2c).
As electrolytes permeate from the plant tissue, the measured con-
ductivity differences increase, corresponding to varying intensi-
ties of cell death. Should complete cellular membrane deterio-
ration occur, it would result in maximal endpoint solution con-
ductivity. The logarithmic scaling suggests that this limit might
be approached at the highest concentration tested. In prelimi-
nary experiments, agroinfiltration of AVRblb2-carrying suspen-
sions of OD600 > 0.1 was attempted, but the degradation of plant
tissue at these high concentrations was too severe, making it chal-
lenging to reliably extract intact leaf discs.

We found a statistically significant difference in mean solution
conductivity compared to the negative control (right-tailed inde-
pendent t-tests, p = 0.05) for all but the infiltration of LR = 0.005
at the 1 h time point (Figure 2d). With PASTEL, we were, there-
fore, able to rapidly detect HR for even low intensities of cell
death. Statistical significance from the control was not found for
the infiltration of LR = 0.005 until the endpoint, but it should be
noted that at this concentration, cell death was only present at the
microscopic level; plant tissue appeared healthy to the naked eye
even seven days after infiltration (Figure 2a).

2.3. High-Resolution Sampling Using the PASTEL System
Detects Significant Variance in Plant Cell Death Intensity and
Kinetics Across Different Leaves

The rapid sampling rate of the system and ability to measure over
a range of frequencies generate a large dataset for each channel
that enables us to analyze individual experiments in more depth
than with a traditional electrolyte leakage assay, where the sam-
pling intervals are typically on the order of hours.[18] Despite be-
ing treated identically, we observed marked differences in solu-
tion conductivity between two leaves of the same plant for the
same infiltration concentrations, with the exception of the nega-
tive controls (Figure 3a). For each leaf in isolation, we observe the
expected trend of endpoint conductivity increasing with higher
infiltration concentration, but comparing across the leaves, we
notice much higher endpoint conductivity for the infiltrations of
LR = 1.0 and LR = 0.2 in leaf B than in leaf A. Notably, the in-
filtration of LR = 0.2 in leaf B results in a higher endpoint con-

ductivity than the infiltration of LR = 1.0 in leaf A. As previously
reported,[29] this finding suggests that differences in agroexpres-
sion and resulting cell death intensity can be significant across
different leaves of the same plant, likely a large source of the
variance we observed when finding the mean conductivity across
multiple experiments. This has a key implication when attempt-
ing to quantify the intensity of cell death caused by different treat-
ments: comparing individual results across different leaves and
plants is likely not a viable strategy (at least with this modality of
generating HR), and instead, the averaging of multiple repeats
is necessary to confidently establish differences. It would appear,
however, that dose dependence holds when all samples are taken
from the same leaf, and single experiments run in this format
could provide at least a preliminary indication of cell death inten-
sity.

Given the high temporal resolution of data generated by PAS-
TEL, we were able to calculate the instantaneous derivative and
rates of change of conductivity without the need for an interpo-
lating numerical model. This allows the kinetics of cell death to
be resolved with far more granularity than traditional hourly sam-
pling, capturing differences in rates of change of conductivity that
may otherwise be missed. For example, we observed secondary
peaks in the rate of change of conductivity after the initial max-
ima from when discs were initially placed in the wells (Figure 3b).
Maximal rates of change of conductivity appear to correlate with
the concentration of infiltration (and so to the intensity of cell
death), indicating this could be a useful additional metric for the
quantification of HR (i.e., the rate of cell death).

To investigate the resistive and capacitive properties of our two-
electrode electrochemical cell for studying HR (Figure 3b) we
swept a range of frequencies (5–100 kHz) with 2 min intervals.
Comparing data captured at 1 and 22 h, we see the relationship
between concentration of infiltration and solution impedance
held across the whole frequency span. Impedance measured re-
mained relatively constant throughout the frequency range at
both time points, with differences in magnitude between in-
filtrations decreasing slightly at higher excitation frequencies.
Changes in solution impedance were correlated with the concen-
tration of infiltration, and at the 22 h end-point all samples tested
resided within the 1.0 × 104–3.0 × 104 Ω band, with the exception
of the negative control. On the other hand, we observe greater
variation in phase angle with frequency, particularly at the high-
frequency tail of the spectrum, where phase angle differs greatly
depending on the concentration of infiltration.

Infiltrations resulting in higher impedance (lower conduc-
tance), in general, have more negative phase angles, indicating
greater capacitance. Again, we observed variation between leaf A
and leaf B for the same infiltrations; differences in impedance
throughout the frequency range mirror the differences in con-
ductivity seen in Figure 3a, but with the relationship of course
inverted. Differences in phase angle are also seen, for example,

the loading ratio of Agrobacterium suspension. Plots grouped by concentrations differing by an order of magnitude with control for reference. Data was
represented as μ ± 𝜎 (shaded region), captured at 10 kHz excitation frequency, 2 min sampling interval, moving average filter applied. N repeats (n ≥ 6)
for concentrations tested as follows (top to bottom): 0.1 = 25, 0.01 = 8, 0.001 = 8, EV (0.0) = 27, 0.02 = 10, 0.002 = 7, 0.05 = 6, 0.005 = 7, 0.0005 = 10. c)
Mean solution conductivities versus LR of infiltration suspension at 1, 4, 8, and 22 h time points. Same source data as in b). Data was represented as μ ±
𝜎. d) p-values for a right-tailed, independent t-test testing the hypothesis that the mean solution conductivity for samples infiltrated with concentration z
(denoted in legend) is greater than the mean solution conductivity of negative controls at time point x. The shaded region represents the 5% significance
level.
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Figure 3. a) Conductivity (top) and rate of change of conductivity (bottom) plots for single electrolyte leakage experiment using same infiltrations on
two leaves of the same plant (Left: Leaf A (solid), Right: Leaf B (dotted). Data captured at 10 kHz excitation frequency. LOWESS smoothing filter applied
(span = 150). b) Measured impedance and phase angle of tested solutions plotted against frequency at time points of 1 and 22 h, excitation frequency
range 5–100 kHz. From left to right: (Leaf A: 1 and 22 h, Leaf B: 1 and 22 h).
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phase angle is significantly more negative for the EV infiltration
in leaf B than A at 22 h.

In this perspective, the sole tracking of solution conductivity at
a fixed frequency can obfuscate the determination of HR level. At
low conductivities, low frequencies are favorable since the polar-
ization resistance in 2-electrode configuration can be neglected.
In contrast, the highly conductive solutions suffer from polariza-
tion resistance and necessitate a higher frequency for accurate
determination of solution conductivity.[30] The tracking of both
impedance and phase angle on a frequency range can provide
valuable insights as we can track a larger conductivity range ac-
curately and provide a clearer picture of the level of HR in plant
tissue.

2.4. PASTEL Enables Detection and Quantification of
Microscopic Cell Death

The ability to detect microscopic cell death is of great importance
in plant immunity research; it facilitates the study of weak re-
sponses and early events occurring prior to HR symptoms be-
coming macroscopically visible (or in cases where they may not
become visible at all). Detection of such low intensities of cell
death requires highly sensitive techniques. In order to evaluate
the performance of our system relative to an optical method of
detection (which are known to be extremely sensitive), particu-
larly with regard to very low intensities of cell death, we con-
ducted electrolyte leakage and propidium iodide-staining experi-
ments simultaneously (Figure 4). Propidium iodide is a dye that
is able to penetrate only non-viable cells and fluoresces upon in-
tercalation with DNA.[31] Cells with compromised membranes
can be identified by imaging dyed tissue using fluorescence mi-
croscopy. We agroinfiltrated a leaf with AVRBlb2-carrying bacte-
rial suspensions, using a suspension of LR = 1.0 as the positive
control and suspension of LR= 0.005 as the low concentration for
microscopic scale cell death. We used an EV-carrying suspension
(LR = 0.0) as a negative control. We excised leaf discs from the
same leaf for both the electrolyte leakage and propidium iodide-
staining experiments. For fluorescence imaging, discs were taken
following 24 and 48 h of incubation (corresponding to electrolyte
leakage timepoints of 0 and 24 h), stained and imaged. The fluo-
rescence of each capture in the x-y plane was quantified by calcu-
lating the percentage of pixels above a fixed threshold intensity
in an attempt to account for background fluorescence.

At 0 h (24 h post infiltration), we found the median percentage
of pixels above the threshold intensity was significantly greater
for the positive control (2.65%) compared with the low concen-
tration (0.19%) and negative control (0.25%) (Figure 4a). A differ-
ence in cell death intensity was not discernible with the low con-
centration and negative control at this time point, with the neg-
ative control in fact having a marginally greater median. In con-
trast, in our concurrent electrolyte leakage experiment we mea-
sured a higher conductivity for the low concentration relative to
the negative control within an hour and throughout the experi-
ment. In this instance, however, the difference in conductivity be-
tween the low concentration and the negative control decreased
toward the endpoint (Figure 4b).

At 24 h (48 h post infiltration), we would expect greater cell
death compared to the 0 h measurement given the longer in-

cubation period, and this is reflected in our results – we ob-
served higher intensity fluorescence across a greater area of the
leaf disc for the positive control, and a greater difference in me-
dian percentage of pixels above threshold intensity (6.82%) ver-
sus the low concentration (0.42%) and negative control (0.27%).
While at 24 h the median intensity measurement for the low con-
centration was slightly greater than the negative control, Dun-
nett’s post-hoc test (Table S1, Supporting Information) showed
the difference in mean intensity compared the negative control
was not statistically significant (p value = 0.511). In contrast, the
difference in mean intensity for the positive control compared
to the negative control was statistically significant at both 0 h
(p value = 4.40 × 10−10) and at 24 h (p value = 1.25 × 10−14).
This would suggest that while this method of fluorescence-based
quantification may be suitable for higher intensities of cell death,
PASTEL may be a more viable approach for lower intensities.

2.5. Machine Learning Models for Binary and Three-Class
Classification

Utilizing our large dataset from replicate electrolyte leakage ex-
periments conducted with N. benthamiana, we developed super-
vised machine learning models for detecting the onset of HR us-
ing the data acquired using PASTEL. We aimed to evaluate if ap-
plication of machine learning models to our data could i) aid in
reliably detecting presence of HR for both low and high inten-
sities of cell death ii) classify different strengths of HR and iii)
reduce the required experimental run time to reliably determine
presence of HR. We developed binary (No HR or HR) and three-
class classification (No HR, Low HR, or High HR) models.

We pre-processed our raw dataset by applying a calibration pro-
file for gain-factor and phase-angle correction to produce cali-
brated conductance and phase data. Subsequently, we applied a
time-domain Savitzky-Golay filter to remove noise from conduc-
tance and phase data captured at each frequency sampled. Each
“run” (each time-series dataset from a single well) was assigned
a unique ID and corresponding label for the target output vec-
tor. For binary classification, labels were assigned as “False” for
negative control EV agroinfiltrations and “True” for all non-zero
levels of agroinfiltration of AVRblb2-carrying suspensions. For
three-class classification: “0” for negative control, “1” for low HR
(0.005 < LR ≤ 0.05) and “2” for high HR (0.01 ≤ LR ≤ 0.1). The
classes were based on the visibility of HR seven days after agroin-
filtration; infiltrations below LR = 0.1 showed little to no visible
difference in comparison to the negative control and so were cat-
egorized as “low HR” (Figure S4, Supporting Information).

To evaluate the performance of these approaches, we trained
binary and three-class classification models at time intervals of
0–1 and 0–22 h using corresponding subsets of the dataset.
For example, for the 0–1 h models, only data captured between
those time points were used for training and testing. Time
series-specific feature extraction was performed using the tsfresh
library[32] on conductance (magnitude, real and imaginary com-
ponents), the time derivative of conductance and phase data cap-
tured at each frequency between 10 and 100 kHz (10 kHz in-
tervals). We trained each model using a random forest classi-
fier and evaluated performance by ten-fold cross-validation, each
fold comprised of training and test sizes of 80% and 20% of the
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Figure 4. a) Box and whisker plot of fluorescence quantification performed on confocal microscopy imaging of propidium iodide-stained leaf discs.
Quantification was performed by projecting maximum intensity across the Z-stack and calculating the percentage of pixels above a fixed threshold
intensity value. Each dot corresponds to an individual z-stack on the x-y plane. Imaging was performed at the 0 h timepoint (left) and 24 h timepoint
(right). Below plots: representative (median) images following maximum intensity projection and binary thresholding for each loading ratio. b) Solution
conductivity measured by our system during concurrent experiment performing an electrolyte leakage assay using discs from the same leaf. Data was
captured at a 10 kHz sampling frequency.

input dataset, respectively. The pre-processing to model evalua-
tion pipeline is summarized in Figure S5 (Supporting Informa-
tion).

We found the binary classification models performed well,
with equally high cumulative true positive (TP) counts (“HR” cor-
rectly classified) with the 0–1 and 0–22 h models (Figure 5a, left).
With the 0–22 h model, the true negative (TN) count (“No HR”
correctly classified) was higher, leading to a higher mean accuracy
(87.8%) than with the 0–1 h model (84.1%) (Figure 5b, left), as de-

fined in Equation (1). It should be noted that the TN counts were
much lower than the TP counts owing to the inherently imbal-
anced nature of the experimental dataset (number of HR positive
samples greatly exceeding that of negative controls). While the
false positive (FP) count (“No HR” incorrectly classified as “HR”)
was reduced with the 0–22 h model, the false negative (FN) count
(“HR” incorrectly classified as “No HR”) did not change. In other
words, the precision (Equation (2)) was improved, but the re-
call (Equation (3)) was not. Owing to the improved precision, we

Adv. Sci. 2024, 2400225 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2400225 (9 of 14)

 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202400225 by T

est, W
iley O

nline L
ibrary on [28/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

Figure 5. Left, all: performance metrics for binary (No HR/HR) classification models. Right, all: performance metrics for three-class (No HR/Low
HR/High HR) classification models. 0–1 h corresponds to models trained with the first hour of the experimental dataset and 0–22 h corresponds to
models trained with all 22 h. a) Cumulative confusion matrices for 0–1 h and 0–22 models. Actual versus predicted classes of tested samples summed
across ten folds of cross validation. b) Accuracy and F1 scores for 0–1 h and 0–22 models. Data represented as μ ± 𝜎, with n = 10 folds of cross validation.
c) Receiver operating characteristic curves of 0–1 and 0–22 h models showing true positive rate against false positive rate at different classification
thresholds. For the three-class classification models (right), ROC calculated as class versus rest. Legend indicates class and area under curve score.
ROC and AUC data represented as μ ± 𝜎, with n = 10 folds of cross validation.
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obtained a higher F1 Score (Equation (4)) with our 0–22 h model
(0.81) than with the 0–1 model (0.75). Additionally, the area under
the curve (AUC) scores obtained from receiver operating charac-
teristic (ROC) curves (Figure 5c, left) show the model using the
0–22 h dataset has better classification performance (AUC= 0.81)
than that with the 0–1 h dataset (AUC = 0.73).

Accuracy = TP + TN
TP + FP + TN + FN

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

F1 Score = 2 ⋅
Precision ⋅ Recall
Precision + Recall

(4)

For three-class classification, there was a greater discrepancy
in performance between the 0–1 and 0–22 h models. With the
0–22 h model, 30 additional samples were correctly classified,
and unlike with the 0–1 h model, there were zero misclassifica-
tions by more than one class across, i.e., “No HR” misclassified as
“High HR” or vice versa (Figure 5a, right). Accuracy and F1 im-
proved significantly with the 0–22 h model (Accuracy = 77.8%,
F1 = 0.75) compared with the 0–1 h model (Accuracy = 65.1%,
F1 = 0.59) (Figure 5b, right). Expectedly, the one versus rest AUC
scores (comparing each class against the rest) are also greater for
the 0–22 h model than the 0–1 h model (Figure 5c, right). With
the 0–22 h model, AUC scores were particularly high for the “No
HR” (AUC = 0.95) and “High HR” (AUC = 0.96) classes, indicat-
ing the model had a strong ability to discriminate these classes.
“Low HR” had a lower score (AUC = 0.83), possibly due to the
class neighboring the other two; the lowest concentrations within
the class most at risk of being misclassified as “No HR” and high-
est most at risk of being misclassified as “High HR”.

In comparison to visual inspection of leaf tissue, our machine-
learning approach offers clear advantages in both detection time
and sensitivity. At 1 day after infiltration (the time point at which
leaf discs are excised) even the highest infiltration concentration
(LR= 1.0) was not visually distinguishable from the negative con-
trol. Our binary-classification model was able to correctly predict
HR with 84.1% accuracy 1 h after this timepoint, using a test
dataset inclusive of all concentrations tested. Moreover, at 2 days
after infiltration, visual symptoms of HR were only visible for
concentrations of LR ≥ 0.2, while at 7 days visual symptoms re-
mained absent for concentrations of LR ≤ 0.05.

3. Conclusion

Although PASTEL is a high-performance phenotyping system
for quantifying HR cell death, it is constructed primarily from
low-cost, off-the-shelf components, requiring only a computer for
data recording and processing. The measurement wells are 3D-
printed and reusable, while the disposable[33] probes can quickly
and easily be assembled by hand or using robots for large vol-
ume manufacturing. In any case, the PASTEL platform can be
constructed in most academic settings with access to basic pro-
totyping equipment. The cost of the entire system (≈$55) is sub-
stantially less than a research-grade benchtop conductivity meter

that would typically be used in ELAs, with a consumable cost of
≈$0.53 per sample (Table S2, Supporting Information). A simple,
fast manufacturing process using low-cost, off-the-shelf compo-
nents makes using a set of new sensors for each experiment vi-
able, avoiding both the need for sterilization and the risk of elec-
trode fouling.

Compared to traditional methods of manually sampling solu-
tion conductivity in a sequential manner, PASTEL significantly
reduces both the time and labor necessary to conduct an ELA.
In addition, it captures data at a much higher sampling rate (ev-
ery 0–2 min vs the typical hourly rate). The high temporal resolu-
tion provides additional information about changes in conductiv-
ity that would otherwise be missed and enables rates of change
in conductivity to be easily calculated. The excitation frequency
is adjustable – measurements can be recorded at a single fre-
quency or swept through a range at each time point, as opposed
to typical fixed-frequency conductivity meters. Automated sam-
pling means no manual handling is required following the initial
setup of an experiment, eliminating the potential risks of solution
cross-contamination, disc perturbation, and data logging errors.
Moreover, the large datasets generated from each experiment can
be used to develop machine learning models for rapid binary and
three-class classification of HR response with high accuracy, with
the potential to reduce required experimental run time and auto-
mate the analysis of results. Use of machine learning with PAS-
TEL has potential applications in high throughput phenotyping;
both minimizing the required experimental run-time and negat-
ing the need for manual data analysis to determine assay results.

The PASTEL platform has the following disadvantages: i) As
it is based on the ELA protocol, it suffers from the same sample
preparation drawbacks; disc excision is time-consuming and re-
quires careful handling, a wash step is required, and the process
is destructive to the plant. Nevertheless, comparatively less han-
dling is required than most other HR assays with the exception of
whole-leaf fluorescence imaging. ii) A negative control is needed
as a reference point to determine whether a sample is undergo-
ing HR, as basal electrolyte leakage can vary. Use of a machine
learning model generated from previous experiments with the
same plant species could remove this requirement. iii) Conduc-
tivity measurements are highly temperature sensitive and so the
system must be run in a temperature-controlled environment,
especially if comparing separate experiments. Additional calibra-
tion protocols and temperature sensors may also be used for tem-
perature compensation.

PASTEL has high scalability and could be evolved into a high-
throughput rapid phenotyping platform simply by integrating a
larger multiplexer and additional well arrays. Through electrode
functionalization, it could also be further developed toward a se-
lective ion sensing approach aiming to temporally resolve indi-
vidual ion species released into the analytical media in the HR.
This development path could shed light on the complex mecha-
nisms of ETI-based HR response and intercellular signaling, pro-
viding an invaluable and versatile tool for plant science. While
in this work, we only evaluated the system with N. benthamiana
undergoing HR, PASTEL is fundamentally based on the ELA
and so could be adapted for use with other species, especially
those where ELAs are already performed. For example, an ELA
performed on Arabidopsis with the same 2 mL solution volume
yielded results within a comparable conductivity range as the
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experiments we performed with PASTEL.[19] Any changes in sen-
sitivity requirements could be simply achieved by adjusting the
solution volume and the number of samples per well, or by ad-
justing the system gain. Potential use cases for PASTEL could
extend to other forms of cell death or indeed any response which
would produce a sufficiently high flux of electrolytes from tissue
to solution, resulting in a measurable change in conductivity.

4. Experimental Section
Plant Material: Transgenic Nicotiana benthamiana expressing Rpi-

blb2 were soil-grown in a growth chamber with a day/night cycle of 24 °C,
50% RH (relative humidity) and 22 °C, 65% RH respectively. The day length
was set at 16 h. Four to five-weeks-old plants were used for experiments.
For each individual experiment, two leaves from a singular plant were
used.

Transient Gene Expression: Agrobacterium tumefaciens carrying
AVRblb2-3xHA constructs[34] were used to mediate transient expres-
sion of AVRblb2 in Rpi-blb2-transgenic N. benthamiana leaves and
thereby generate HR.[25,27] A. tumefaciens carrying empty vector EV-3xHA
constructs[35] were used as control. A. tumefaciens cultures were grown
for 2 days on LB agar plates with spectinomycin selection (Tryptone
10 g L−1, Yeast Extract 5 g L−1, Sodium Chloride 10 g L−1, Agar 15 g L−1,
spectinomycin 100 μg mL−1. Washing and harvesting: bacteria was twice
suspended in 1.5 mL sterile dH2O and centrifuged at 4000 rpm for 5 min
before being resuspended in 1 mL agroinfiltration buffer (10 mm MES
hydrate, 10 mm MgCl2). The optical density of the stock suspension at
600 nm was measured with a spectrophotometer (Eppendorf) and then
diluted to the desired OD600 value. In dose-dependence tests, AVRblb2
construct-carrying suspensions and empty vector construct-carrying
suspensions were mixed to obtain an overall OD600 = 0.1. Inoculation of
the plant material was performed by pressure-infiltration with a needleless
syringe on the abaxial leaf surface on whole plants. Approximately 0.2 mL
of bacterial suspension was infiltrated per patch.

Assay Procedure: A. tumefaciens suspensions were prepared at the
desired OD600 values, and pressure infiltrated into leaves of Rpi-blb2-
transgenic N. benthamiana. Infiltrated regions were outlined with a marker
for identification when dry. Following a 24 h incubation of the plant in a
growth room, leaf discs were excised using a number 3 cork borer (7.8 mm
diameter) in sets of 3, with each set then placed in a 1.5 mL centrifuge tube
containing 1 mL sterile dH2O for 15 min. The tubes were inverted several
times before transferring each set of discs to a test well (1 set per well) con-
taining 2 mL sterile dH2O. Lids were attached to the test wells, and mea-
surement was initiated by serial command on the connected computer.
Following the measurement period, data was imported and processed in
MATLAB. Experiments were conducted in a temperature-controlled incu-
bator maintained at 24 °C.

Propidium Iodide Staining and Confocal Microscopy: Propidium iodide
(PI) solution (20 μm) was prepared by dilution of 1.0 mg mL−1 stock
(Merck). Leaf discs were excised from the treated plant and placed in sep-
arate centrifuge tubes containing 20 μm PI to incubate for 15 min. Discs
were removed, placed in a petri dish with dH2O, and then washed for
5 min using an orbital shaker. Microscopy slides were then prepared with
the discs for imaging with a confocal microscope using a water immer-
sion lens. Ten to thirteen captures were taken across the x-y plane per leaf
disc, with 6–9 z-axis slices taken per capture. Data were processed and an-
alyzed using ImageJ (Fiji) to quantify the fluorescence intensity. For each
capture, a maximum intensity Z-axis projection was applied. Binary thresh-
olding was applied to the resulting image (< 250 → 0, ≥ 250 →1) in order
to account for background fluorescence. The mean intensity of the binary
image was then quantified and normalized to give the percentage of pixels
above the threshold intensity.

Modular Wells: The modular wells were 3D printed (N2 Plus, Raise3D)
with transparent ABS filament (Verbatim). The lids and the well holder
were 3D printed with orange PLA filament (Raise3D). All printed compo-
nents were designed using SOLIDWORKS.

Conductivity Probes: Conductivity probes were constructed by embed-
ding two-pin gold plated through the hole connector header (5-826634-0,
TE Connectivity) into the lid of a 1.5 mL reaction tube (616-201, Greiner
Bio-one). Pins were aligned with the lid brim and attached to jumper con-
nectors (PRT-12794, SparkFun Electronics). The assembly was secured in
position using hot melt adhesive. A 6.5 mm bore nitrile rubber O-Ring (RS
PRO) was placed around the lid aperture to create a water-tight seal when
inserted into the modular well.

Electronics: An AD5933 impedance converter (Analog Devices) inte-
grated on a custom printed circuit board (PCB) was implemented to mea-
sure complex impedance over a frequency range of 5–100 kHz. By sam-
pling the response signal, the AD5933 generates real and imaginary data
to determine the magnitude and phase of the measured impedance, fol-
lowing software calibration. The input/output voltage pins of the AD5933
were connected to the electrode assemblies via an 8-channel multiplexer
(74HC4051, SparkFun) such that the excitation signal could be applied and
programmatically switched between wells to perform near-simultaneous,
parallel measurements. An ATmega328P CH340 Nano microcontroller
was used for the overall control of the measurement system interfacing
with both the multiplexer and AD5933 via I2C. The measurement system
was connected to a nearby computer over USB, for exchange of experi-
mental data and commands between. The USB connection also provided
all the electrical power needed to operate the measurement system. An
excitation voltage of 198 mVP-P was used for all measurements.

Calibration: Conductivity calibration of the system was performed us-
ing dH2O and KCl solutions ranging from 2 μm–50 mm. Calibration solu-
tions were kept inside a temperature-controlled incubator set to 24 °C prior
to testing. For each solution tested, 2 mL was placed in an individual well,
and conductivity was measured for 30 min (frequency sweep 5–100 kHz,
1 kHz intervals, 2 min sweep interval) and repeated (n = 3). Wells were
sterilized between measurements, and a new electrode assembly was used
for each measurement. A research grade pH/Conductivity bench meter
was used for reference conductivity measurements of the same solutions
(n = 3) (HI-5521, HANNA Instruments).

Impedance magnitude and phase angle data were calculated
from AD5933 Impedance converter’s raw output, as outlined in the
datasheet,[36] for use in the machine learning model. To correct sys-
tem offset and gain errors in measured magnitude and phase angle,
calibration data was obtained by performing a frequency sweep on an
experimentally relevant range of resistive loads (1–220 kΩ). For gain factor
correction, a mapping of measured magnitude to actual impedance was
generated by finding coefficients for a 4th-order polynomial fitting at each
excitation frequency (5–100 kHz). For phase angle correction, a mapping
of measured magnitude to the system phase angle was generated by
finding coefficients for a two-term exponential fitting at each excitation
frequency. The mappings were then applied to the raw data, converting
magnitude to impedance and subtracting the calculated system phase
angle from the measured phase angle.

For experimental data captured at the 10 kHz excitation frequency, raw
output magnitude values were converted to conductivity using a scaling
factor calculated from the average calibration measurements of 500 μm
KCl. Constant sensor parameters and a constant gain factor throughout
the relevant range of impedance at this frequency allowed for simple linear
scaling.[37–40]

Data Acquisition and Processing: Measurement parameter input, mea-
surement initiation, and data capture were performed using SerialPlot
(Hasan Yavuz) interfacing with the ATmega328P CH340 Nano microcon-
troller. The microcontroller was programmed using the Arduino IDE. MAT-
LAB (Mathworks) was used to process the comma-separated value (CSV)
output files from each experiment, apply calibration profiles, and perform
data analysis. Overall circuit schematic shown in Figure S7 (Supporting
Information).

Statistical Analysis: With the exception of single experiment analyses
(Figures 3 and 4b), continuous variables were expressed as mean ± stan-
dard deviation (SD) with n independent repeats. A right-tailed, inde-
pendent Student’s t-test was used to analyze the difference between EV
(negative-control) data and positive data at multiple time points. One-way
ANOVA testing followed by Dunnett’s post-hoc test was carried out across
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treatment groups in the propidium iodide staining tests. Significance was
defined as p ≤ 0.05 in all cases. All statistical analysis was performed in
MATLAB (Mathworks).

Machine Learning Model: The magnitude and phase-corrected phase
and conductance data were pre-processed by time-domain Savitzky-Golay
filtering (span = 50% window size) at each measured frequency. Each
data series from each individual well across all experiments was assigned
an ID and label for the target output vector (False if EV, True other-
wise). Feature extraction was performed using tsfresh library (Input vari-
ables: conductance, phase, rate of change of conductance at each mea-
sured frequency).[32,41] Models were trained by random forest classifica-
tion (sklearn) using the balanced class-weighting parameter and cross-
validated using stratified shuffle split (sklearn) with 10 splits and an 80:20
training: test ratio.[42] Accuracy and F1 scores were recorded for each fold.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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